Mechanical Ventilation

Indications

- Prolonged positive pressure ventilation
- Increased work of breathing

Goals

- Increase efficiency of breathing
- Increase oxygenation
- Improve ventilation/perfusion relationships
- Decrease work of breathing

Types of Systems

- Negative Pressure Ventilator
 - "Iron lung"
 - Allows long-term ventilation without artificial airway
 - Maintains normal intrathoracic hemodynamics
 - Uncomfortable, limits access to patient

Types of Systems

- Positive Pressure Ventilator
 - Uses pressures above atmospheric pressure to push air into lungs
 - Requires use of artificial airway
 - Types
 - Pressure cycled
 - Time cycled
 - Volume cycled

Positive Pressure Ventilators

Pressure Cycled

- Terminates inspiration at preset pressure
- Small, portable, inexpensive
- Ventilation volume can vary with changes in airway resistance, pulmonary compliance
- Used for short-term support of patients with no pre-existing thoracic or pulmonary problems

Positive Pressure Ventilators

Volume cycled

- Most widely used system
- Terminates inspiration at preset volume
- Delivers volume at whatever pressure is required up to specified peak pressure
- May produce dangerously high intrathoracic pressures

Positive Pressure Ventilators

- Time cycled
 - Terminates inspiration at preset time
 - Volume determined by
 - Length of inspiratory time
 - Pressure limit set
 - Patient airway resistance
 - Patient lung compliance
 - Common in neonatal units

Volume-Cycled Ventilator Modes

Controlled Mechanical Ventilation

- Patient does not participate in ventilations
- Machine initiates inspiration, does work of breathing, controls tidal volume and rate
- Useful in apneic or heavily sedated patients
- Useful when inspiratory effort contraindicated (flail chest)
- Patient must be incapable of initiating breaths
- Rarely used

Volume-Cycled Ventilator Modes

Assist Mode

- Allows patient to control ventilator rate within limits
- Inspiration begins when ventilator senses patients inspiratory effort

Assist Mode

Assist/Control (A/C)

- Patient triggers machine to deliver breaths but machine has preset backup rate
- Patient initiates breath--machine delivers tidal volume
- If patient does not breathe fast enough, machine takes over at preset rate
- Tachypneic patients may hyperventilate dangerously

Assist Mode

- Intermittent Mandatory Ventilation (IMV)
 - Patient breathes on own
 - Machine delivers breaths at preset intervals
 - Patient determines tidal volume of spontaneous breaths
 - Used to "wean" patients from ventilators
 - Patients with weak respiratory muscles may tire from breathing against machine's resistance

Assist Mode

- Synchronized Intermittent Mandatory Ventilation (SIMV)
 - Similar to IMV
 - Machine timed to delay ventilations until end of spontaneous patient breaths
 - Avoids over-distension of lungs
 - Decreases barotrauma risk

Positive End Expiratory Pressure (PEEP)

- Positive pressure in airway throughout expiration
- Holds alveoli open
- Improves ventilation/perfusion match
- Decreases FiO₂ needed to correct hypoxemia
- Useful in maintaining pulmonary function in noncardiogenic pulmonary edema, especially ARDS

Positive End Expiratory Pressure (PEEP)

DANGERS

- High intrathoracic pressures can cause decreased venous return and decreased cardiac output
- May produce pulmonary barotrauma
- May worsen air-trapping in obstructive pulmonary disease

Continuous Positive Airway Pressure (CPAP)

- PEEP without preset ventilator rate or volume
- Physiologically similar to PEEP
- May be applied with or without use of a ventilator or artificial airway
 - Requires patient to be breathing spontaneously
 - Does not <u>require</u> a ventilator but can be performed with <u>some</u> ventilators

High Frequency Ventilation (HFV)

- Small volumes, high rates
- Allows gas exchange at low peak pressures
- Mechanism not completely understood
- Systems
 - High frequency positive pressure ventilation--60-120 breaths/min
 - High frequency jet ventilation--up to 400 breaths/min
 - High frequency oscillation--up to 3000 breaths/min

High Frequency Ventilation (HFV)

Useful in managing:

- Tracheobronchial or bronchopleural fistulas
- Severe obstructive airway disease
- Patients who develop barotrauma or decreased cardiac output with more conventional methods
- Patients with head trauma who develop increased
 ICP with conventional methods
- Patients under general anesthesia in whom ventilator movement would be undesirable

Ventilator Settings

- Tidal volume--10 to 15ml/kg (std = 12 ml/kg)
- Respiratory rate--initially 10 to 16/minute
- FiO₂--0.21 to 1.0 depending on disease process
 - 100% causes oxygen toxicity and atelectasis in less than 24 hours
 - 40% is safe indefinitely
 - PEEP can be added to stay below 40%
 - Goal is to achieve a PaO₂ >60
- I:E Ratio--1:2 is good starting point
 - Obstructive disease requires longer expirations
 - Restrictive disease requires longer inspirations

Ventilator Settings

- Ancillary adjustments
 - Inspiratory flow time
 - Temperature adjustments
 - Humidity
 - Trigger sensitivity
 - Peak airway pressure limits
 - Sighs

- Mechanical malfunction
 - Keep all alarms activated at all times
 - BVM must always be available
 - If malfunction occurs, disconnect ventilator and ventilate manually

- Airway malfunction
 - Suction patient as needed
 - Keep condensation build-up out of connecting tubes
 - Auscultate chest frequently
 - End tidal CO₂ monitoring
 - Maintain desired end-tidal CO₂
 - Assess tube placement

- Pulmonary barotrauma
 - Avoid high-pressure settings for high-risk patients (COPD)
 - Monitor for pneumothorax
 - Anticipate need to decompress tension pneumothorax

- Hemodynamic alterations
 - Decreased cardiac output, decreased venous return
 - Observe for:
 - Decreased BP
 - Restlessness, decreased LOC
 - Decreased urine output
 - Decreased peripheral pulses
 - Slow capillary refill
 - Pallor
 - Increasing Tachycardia

- Renal malfunction
- Gastric hemorrhage
- Pulmonary atelectasis
- Infection
- Oxygen toxicity
- Loss of respiratory muscle tone

Quick Guide to Setup

- Self check and/or Calibration as needed
- Check circuit and connections
- Set Mode: Usually "Assist/Control"
- Adjust "I" time: Usually 1 second
- Set tidal volume: 10-12 ml/kg is standard
 - May need to set "Flow" based on "I" time
- Set ventilatory rate: Adult 12-16/min

Quick Guide to Setup

- Set PEEP: std 5 cm H₂0; max 20 cm H₂0
 - Caution at 10 cm H₂0 and greater
- Set "Assist/SIMV Sensitivity": -2 cm H₂0
- Set pressure alarms
- Assess patient to confirm ventilation function
 - Monitor vital signs
 - Pulse oximetry (waveform)
 - Capnography (waveform)